Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ergonomics ; : 1-17, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37960939

RESUMEN

Sportswear manufactured from hygroscopic fibres can absorb moisture during activity or intermittent exercise and may change the thermal management of clothing. This change in the thermal behaviour of the fabric can lead to buffer the post-exercise chill. During activity in a moderately cold environment clothing made of 100% wool fibre helps wearers to slow down evaporative and conductive cooling, which can provide more thermal and comfort sensation compared to 100% cotton, 100% viscose, and 100% polyester. Twelve males performed cycling in a controlled climate chamber of temperature: 15 ± 0.5 °C, and relative humidity (RH):50 ± 5% followed by a drying phase in a windy environment by wearing full-sleeve t-shirts. Wool shirt was observed to hold a greater torso skin temperature (p < 0.05) than the other fibre types. Participants were asked a range of comfort-related questions at varying intervals. The temperature sensation was found (p < 0.05) significant for wool clothing. Moreover, participants rated wool shirt significantly (p < 0.05) as more comfortable during the post-exercise phase.


Both clothing and physiological responses were investigated during exercise and post-exercise periods for male participants while wearing full-sleeve sportswear made of wool, cotton, viscose, and polyester. Wool clothing maintained a higher skin microclimate temperature and a warmer sensation, helping buffer the post-exercise chill.

2.
Int J Occup Saf Ergon ; 28(4): 2183-2192, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34583615

RESUMEN

This article describes results from a survey of firefighters designed to identify conditions that contribute to heat strain in structural firefighting. Based on responses from about 3000 firefighters across the USA and Canada, the article provides invaluable information about how firefighters associate environmental conditions, work tasks and other factors with heat strain. One-half of firefighters surveyed have experienced heat stress during their service. They can wear fully deployed turnout gear for 2 h or more at the fire scene, reinforcing the importance of turnout suit breathability as a factor in heat strain. Survey results are useful in weighing the comparative value of total heat loss (THL) and evaporative heat resistance (Ref) for predicting turnout-related heat strain. Survey findings support the inclusion of a performance criterion in the National Fire Protection Association 1971 standard for firefighter personal protective equipment based on limiting Ref of turnout materials along with current THL requirement.


Asunto(s)
Bomberos , Incendios , Trastornos de Estrés por Calor , Humanos , Equipo de Protección Personal , Regulación de la Temperatura Corporal
3.
Insects ; 12(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34357296

RESUMEN

Garments treated with chemical insecticides are commonly used to prevent mosquito bites. Resistance to insecticides, however, is threatening the efficacy of this technology, and people are increasingly concerned about the potential health impacts of wearing insecticide-treated clothing. Here, we report a mathematical model for fabric barriers that resist bites from Aedes aegypti mosquitoes based on textile physical structure and no insecticides. The model was derived from mosquito morphometrics and analysis of mosquito biting behavior. Woven filter fabrics, precision polypropylene plates, and knitted fabrics were used for model validation. Then, based on the model predictions, prototype knitted textiles and garments were developed that prevented mosquito biting, and comfort testing showed the garments to possess superior thermophysiological properties. Our fabrics provided a three-times greater bite resistance than the insecticide-treated cloth. Our predictive model can be used to develop additional textiles in the future for garments that are highly bite resistant to mosquitoes.

4.
ACS Appl Mater Interfaces ; 13(3): 4652-4664, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33428371

RESUMEN

In different mechanical conditions, repetitive friction in combination with pressure, shear, temperature, and moisture leads to skin discomfort and imposes the risks of developing skin injuries such as blisters and pressure ulcers, frequently reported in athletes, military personnel, and in people with compromised skin conditions and/or immobility. Textiles next to skin govern the skin microclimate, have the potential to influence the mechanical contact with skin, and contribute to skin comfort and health. The adhesion-friction theory suggests that contact area is a critical factor to influence adhesion, and therefore, friction force. Friction being a surface phenomenon, most of the studies concentrated on the surface profile or topographic analysis of textiles. This study investigated both the surface profiles and the inner construction of the fabrics through X-ray microcomputed tomographic three-dimensional image analysis. A novel nondestructive method to evaluate yarn and fabric structural details quantitatively and calculate contact area (in fiber area %) experimentally has been reported in this paper. Plain and satin-woven fabrics with different thread densities and made from 100% cotton ring-spun yarns with two different linear densities (40 and 60 Ne) were investigated in this study. The measurements from the tomographic images (pixel size: 1.13 µm) and the fiber area % analysis were in good agreement to comprehend and compare the yarn and fabric properties reported. The fiber area % as reported in this paper can be used to evaluate the skin-textile interfaces and quantitatively determine the contact area under different physical, mechanical, and microclimatic conditions to understand the actual skin-textile interaction during any physical activity or sports. The proposed method can be helpful in engineering textiles to enhance skin comfort and prevent injuries, such as blisters and pressure ulcers, in diversified application areas, including but not limited to, sports and healthcare apparel, military apparel, and firefighter's protective clothing. In addition, the images were capable of precisely evaluating yarn diameters, crimp %, and packing factor as well as fabric thickness, volumetric densities, and cover factors as compared with those obtained from theoretical evaluation and existing classical test methods. All these findings suggest that the proposed new method can reliably be used to quantify the yarn and fabric characteristics, compare their functionality, and understand the structural impacts in an objective and nondestructive way.


Asunto(s)
Textiles/análisis , Fenómenos Biomecánicos , Fibra de Algodón/análisis , Diseño de Equipo , Fricción , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Fenómenos Fisiológicos de la Piel , Microtomografía por Rayos X/instrumentación
5.
Perform Prot Cloth Equip ; 11: 222-236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34766175

RESUMEN

Manikins have been used for almost 100 years to help understand the properties of clothing materials and garments. Data from sweating manikins also have been used within thermoregulation computer models to estimate the physiological responses of humans. In recent years, the development of the ManikinPC system has incorporated a thermoregulation model into a thermal sweating manikin system to provide a real-time analysis of predicted physiological response. This paper describes an experimental study that demonstrates the utility of this manikin-model system to predict the effects of three composite materials used in firefighter suits on human physiological response. This study addresses this question: Can ManikinPC emulate the physiological response of a controlled wear trial using three different sets of firefighter turnout gear in one environmental condition? The average core temperature, skin temperature, and sweat loss from human subjects are compared with the predicted values generated from the manikin coupled with the model. Results indicate similar trends and ranking of the three suits. The data revealed slightly higher predictive responses from the manikin-model system compared with the collected human data.

6.
Appl Ergon ; 70: 260-268, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29866318

RESUMEN

The purpose of this study was to investigate design modifications in structural firefighter turnout suits for their ability to reduce heat stress during firefighting activities. A secondary aim of this research established a benchmark for the manikin heat loss value necessary to achieve significant improvements in physiological comfort. Eight professional firefighters participated in five simulated exercise sessions wearing a control turnout suit and one of four turnout prototypes: Single Layer, Vented, Stretch, and Revolutionary. Physiological responses (internal core body temperature, skin temperature, physiological strain, heart rate, and sweat loss) were measured when wearing each turnout suit prototype. Results demonstrated a significant increase in work time and significant reductions in heat stress (core temperature, skin temperature, and physiological strain) when participants wore the Single Layer, Vented, and Revolutionary prototypes. An estimated garment heat loss value of 150 W/m2 was determined in order to achieve a significant reduction in heat stress.


Asunto(s)
Diseño de Equipo , Ejercicio Físico/fisiología , Trastornos de Estrés por Calor/prevención & control , Ropa de Protección , Adulto , Benchmarking , Regulación de la Temperatura Corporal , Prueba de Esfuerzo , Bomberos , Frecuencia Cardíaca , Trastornos de Estrés por Calor/fisiopatología , Calor , Humanos , Masculino , Maniquíes , Salud Laboral , Temperatura Cutánea , Estrés Fisiológico , Sudoración , Pérdida de Peso
7.
Ann Work Expo Health ; 62(2): 232-242, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29293872

RESUMEN

Armed forces typically have personal protective clothing (PPC) in place to offer protection against chemical, biological, radiological and nuclear (CBRN) agents. The regular soldier is equipped with permeable CBRN-PPC. However, depending on the operational task, these PPCs pose too much thermal strain to the wearer, which results in a higher risk of uncompensable heat stress. This study investigates the possibilities of adjustable CBRN-PPC, consisting of different layers that can be worn separately or in combination with each other. This novel concept aims to achieve optimization between protection and thermal strain during operations. Two CBRN-PPC (protective) layers were obtained from two separate manufacturers: (i) a next-to-skin (NTS) and (ii) a low-burden battle dress uniform (protective BDU). In addition to these layers, a standard (non-CBRN protective) BDU (sBDU) was also made available. The effect of combining clothing layers on the levels of protection were investigated with a Man-In-Simulant Test. Finally, a mechanistic numerical model was employed to give insight into the thermal burden of the evaluated CBRN-PPC concepts. Combining layers results in substantially higher protection that is more than the sum of the individual layers. Reducing the airflow on the protective layer closest to the skin seems to play an important role in this, since combining the NTS with the sBDU also resulted in substantially higher protection. As expected, the thermal strain posed by the different clothing layer combinations decreases as the level of protection decreases. This study has shown that the concept of adjustable protection and thermal strain through multiple layers of CBRN-PPC works. Adjustable CBRN-PPC allows for optimization of the CBRN-PPC in relation to the threat level, thermal environment, and tasks at hand in an operational setting.


Asunto(s)
Trastornos de Estrés por Calor/prevención & control , Personal Militar , Exposición Profesional/prevención & control , Ropa de Protección , Adulto , Análisis de Varianza , Diseño de Equipo , Humanos , Masculino , Ensayo de Materiales/métodos , Ropa de Protección/efectos adversos , Ropa de Protección/normas , Adulto Joven
8.
Ind Health ; 55(6): 529-536, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-28978903

RESUMEN

To determine safe working conditions in emergency situations at petro-chemical plants in the Netherlands a study was performed on three protective clothing combinations (operator's, firefighter's and aluminized). The clothing was evaluated at four different heat radiation levels (3.0, 4.6, 6.3 and 10.0 k∙W∙m-2) in standing and walking posture with a thermal manikin RadMan™. Time till pain threshold (43°C) is set as a cut-off criterion for regular activities. Operator's clothing did not fulfil requirements to serve as protective clothing for necessary activities at heat radiation levels above 1.5 k∙W∙m-2 as was stated earlier by Den Hartog and Heus1). With firefighter's clothing it was possible to work almost three min up to 4.6 k∙W∙m-2. At higher heat radiation levels firefighter's clothing gave insufficient protection and aluminized clothing should be used. Maximum working times in aluminized clothing at 6.3 k∙W∙m-2 was about five min. At levels of 10.0 k∙W∙m-2 (emergency conditions) emergency responders should move immediately to lower heat radiation levels.


Asunto(s)
Calor , Ropa de Protección , Bomberos , Incendios , Humanos , Maniquíes , Países Bajos , Exposición Profesional/prevención & control , Postura , Temperatura Cutánea/efectos de la radiación
9.
Ann Work Expo Health ; 61(2): 248-259, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28395350

RESUMEN

A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable (NFPA 1991) suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied. Forty human subjects between the ages of 25 and 50 participated in a protocol approved by the local ethical committee. Six different fully encapsulated impermeable HazMat suits were evaluated in three climates: moderate (24°C, 50% RH, 20°C WBGT), warm-wet (32°C, 60% RH, 30°C WBGT), and hot-dry (45°C, 20% RH, 37°C WBGT, 200 W m-2 radiant load) and at three walking speeds: 2.5, 4, and 5.5 km h-1. The medium speed, 4 km h-1, was tested in all three climates and the other two walking speeds were only tested in the moderate climate. Prior to the test a submaximal exercise test in normal clothing was performed to determine a relationship between heart rate and oxygen consumption (pretest). In total, 163 exposures were measured. Tolerance time ranged from as low as 20 min in the hot-dry condition to 60 min (the maximum) in the moderate climate, especially common at the lowest walking speed. Between the six difference suits limited differences were found, a two-layered aluminized suit exhibited significant shorter tolerance times in the moderate climate, but no other major significant differences were found for the other climates or workloads. An important characteristic of the overall dataset is the large variability between the subjects. Although the average responses seem suitable to be predicted, the variability in the warmer strain conditions ranged from 20 min up to 60 min. The work load in these encapsulated impermeable suits was also significantly higher than working in normal clothing and higher than predicted by the Pandolf equation. Heart rate showed a very strong correlation to body core temperature and was in many cases the limiting factor. Setting the heart rate maximum at 80% of predicted individual maximum (age based) would have prevented 95% of the cases with excessive heat strain. Monitoring of heart rate under operational conditions would further allow individually optimize working times and help in preventing exertional heat stroke.


Asunto(s)
Clima , Calor/efectos adversos , Esfuerzo Físico/fisiología , Ropa de Protección/efectos adversos , Carga de Trabajo , Temperatura Corporal/fisiología , Prueba de Esfuerzo , Frecuencia Cardíaca/fisiología , Humanos , Consumo de Oxígeno
10.
J Occup Environ Hyg ; 14(6): 448-455, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28278064

RESUMEN

A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable chemical protective suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied. One particular area of interest was the fluid loss of responders during work in these suits as dehydration may be an additional health concern to the heat strain. 17 City of Raleigh firemen and 24 students were tested at two different labs. Subjects between the ages of 25 and 51 were used for human subject trials in a protocol approved by the local ethical committee. Six different Level A HazMat suits were evaluated in three climates: moderate (24°C, 50% RH, 20°C WBGT), warm-wet (32°C, 60% RH, 30°C WBGT), and hot-dry (45°C, 20% RH, 37°C WBGT, 200 W/m2 radiant load) and at three walking speeds: 2.5 km/hr, 4 km/hr, and 5.5 km/hr. 4 km/hr was tested in all three climates and the other two walking speeds were tested in the moderate climate. Weight loss data was collected to determine fluid loss during these experiments. Working time ranged from as low as 20 min in the hot-dry condition to 60 min (the maximum) in the moderate climate, especially common at the lowest walking speed. The overall results from all experiments showed that fluid loss ranged from 0.2-2.2 L during these exposures, with the average fluid loss being 0.8 L, with 56% of the data between 0.5 L and 1 L of fluid loss. Further analysis showed that a suggestion of drinking 0.7 Liter per hour would safely hydrate over 50% of responders after one work-rest cycle. Applying this fluid volume over three work-rest cycles only put 11% of responders at risk of hypohydration vs. the 57% at risk with no fluid intake.


Asunto(s)
Deshidratación/prevención & control , Ropa de Protección/efectos adversos , Adulto , Deshidratación/fisiopatología , Bomberos , Calor , Humanos , Masculino , Persona de Mediana Edad , Esfuerzo Físico , Velocidad al Caminar/fisiología , Pérdida Insensible de Agua , Pérdida de Peso
11.
Ergonomics ; 60(7): 997-1007, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27562913

RESUMEN

Range of motion (ROM) can be restricted by wearing stiff and bulky clothing. This is particularly true of firefighter suits that are constructed using fabric layers to provide thermal protection from fire. This study developed an evaluation technique to quantify the loss of mobility associated with wearing firefighters' protective suits that were deliberately selected to represent similar ergonomic design features. The ROM of 10 firefighters was measured using electro-goniometers attached to their bodies while they wore uniforms and a reference outfit, and performed specific movements. The most restrictive uniform is the Bulky suit that contained additional layers of materials in sleeves and on the knees. The Traditional Suit was more ROM restrictive than Ergonomic. The subjective evaluation of suits supported the objective assessments provided by the electro-goniometers. A 3-D body scanning technique was employed to establish a correlation between the bulkiness of firefighter outfits and subject ROM. Practitioner Summary: This study presents a methodology for measurements of range of motion (ROM) in firefighters wearing personal protective equipment (PPE). Even small differences in designs of PPE may impact firefighters' ROM, which can be detected by electro-goniometers providing measurements if they are attached along the joint to measure limb angular movement.


Asunto(s)
Ergonomía/métodos , Bomberos , Movimiento/fisiología , Equipo de Protección Personal/efectos adversos , Rango del Movimiento Articular/fisiología , Adulto , Diseño de Equipo/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Musculoesqueléticas/etiología , North Carolina , Enfermedades Profesionales/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...